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Chapter 1

Executive Summary

Multiple imputation is a valuable technique for reducing bias when training
predictive models in health data with missing values, and for increasing appli-
cability when deploying the models in data with missing values.

Multiple imputation works by creating a representative sample of plausible val-
ues that the missing data could have had, and then averaging the analysis over
that sample. Using randomly-sampled representative values reduces bias, and
using a sample of multiple plausible values for each missing value allows for valid
estimates of uncertainty.

In large datasets, the classical methods of multiple imputation are computation-
ally challenging. One goal of this project was to investigate multiple imputation
using modern machine learning methods: random forests, and deep neural net-
works. These approaches are computationally feasible in large datasets but the
representative sampling of the imputations is still not as good as the classical
approaches.

We recommend

o using multiple imputation where there is substantial missing data

e using mice, multiple imputation by chained equations, if computationally
feasible

e considering random-forest if mice is not computationally feasible and
missing-data bias is a major concern

e updating this document in a year or two, as the machine learning ap-
proaches are an active research area.
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Chapter 2
Why impute?

Missing data is ubiquitous in statistics. Even theoretically-complete adminis-
trative data such as the NMDS for hospital admissions will have some fields not
filled in. Additional missing data will be created when impossible values are
removed in data cleaning.

Traditionally, records with missing observations have simply been omitted from
data analysis and model fitting. This ‘complete-case’ approach to analysis is
automated in all major statistical software; it was the only straightforward
approach available when the packages were created.

Complete-case analysis, however, can be substantially biased; people with miss-
ing data are not a representative sample of the population. For example, in the
2018 New Zealand Census(External Data Quality Panel, 2019, table 4.8), 16%
of those who responded to the question on ‘Maori descent’ indicated they did
have Maori descent, but Stats New Zealand estimate that 48% of those who
did not respond had Maori descent. In healthcare settings, people who do not
respond may be at systematically lower risk if measurements are made based
on clinical need, or at systematically higher risk if missing data reflects poorer
access to care or higher clinician workload.

There are two general and statistically principled ways of handling missing data.
The first is to use only the complete records, but to reweight them so that they
represent the whole target population; this is analogous to direct standardisation
for age in epidemiology. Reweighting is straightforward, but ineflicient; there
may be nearly-complete data on many people, and it is being ignored. The
second is imputation.

First, consider single imputation, which replaces each missing value by a single
imputed value. There are two approaches to single imputation: replacing a
missing value by the most likely true value, and replacing by a randomly chosen
plausible value, in both cases taking into account what else is known about the
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individual. The first approach corrects some of the bias, but has a tendency to
cause stereotyping. Suppose, for example, that we are imputing current smoking
status. The most likely value, for almost any group of people in New Zealand,
is ‘non-smoker’, because the smoking prevalence is well below 50%. However,
imputing ‘non-smoker’ for all the missing values will lead to a downwards bias
in smoking prevalence. Similarly, imputing ethnicity by the most likely value
will over-represent NZ Europeans, and imputing diabetes status by the most
likely value will under-represent diabetes. Imputing the most likely value is still
a helpful strategy with small amounts of missing data, or where the values can
be accurately predicted.

The second single-imputation approach is widely used for census data; miss-
ing values are replaced by the observed value from some other individual, who
is randomly chosen from a set of sufficiently close matches. Stochastic single
imputation will preserve the distribution of each variable. For example, a miss-
ing smoking status will be imputed as smoking or non-smoking in proportion
to the actual prevalence in matching individuals. However, stochastic imputa-
tion tends to bias associations between variables and between individuals in a
household.

All single-imputation methods suffer from the problem of ‘making up data’ The
data set ends up complete; there is no simple way to know how much of the sta-
tistical information in the data is real and how much was created from nothing.
As long as only a few percent of data are imputed this isn’t a problem, but if
10-20% is imputed the standard errors are likely to be too small and p-values
are likely to overstate the evidence.

Multiple imputation(Rubin, 1987) does allow for a valid assessment of evidence
after imputation. Rather than being imputed only once, each missing value is
replaced by a representative sample of plausible values to create a collection of
plausible complete data sets. Each of these data sets is run through the same
analysis, and the differences in results between the analyses tells us how much
extra uncertainty can be attributed to the ‘made-up’ data.

Imputation will be most effective when there are variables available that predict
being missing or predict the values of the missing variable, but that are not going
to be included in the predictive model. They might be excluded because they are
not readily available in production use, or because they are not available until
after the point when the prediction must be made, or because of face-validity
or parsimony concerns.

Finally, it’s important to note that imputation is not magic. It’s reasonable to
expect that missing-data bias will be reduced by multiple imputation, but the
bias will only be completely removed if there are observed variables that can
predict all the differences in missingness. This is called the Missing At Random
assumption; it is provably required for any method that completely removes
missing-data bias, but is unlikely to be exactly true in practice.



Chapter 3

Available implementations
of multiple imputation

We evaluated the following imputation software

o mi, an R package using Bayesian generalised linear models (Gelman and
Hill, 2011)

e mice, standing for multiple imputation with chained equations, available
in R and Stata (van Buuren and Groothuis-Oudshoorn, 2011)

o missForest (Stekhoven and Buehlmann, 2012) and missRanger (Mayer,
2019), two R packages using random forests for imputation

e MIDAS, a Python program using two forms of deep neural network (varia-
tion autoencode and denoising autoencoder), which was in pre-alpha de-
velopment (Oracen, 2018)

3.1 Computational scalability

We first considered computational scalability(Connor, 2018). We found that mi
was unusable when the number of variables was more than 18 or the number of
observations more than 1,000; it is not suitable for large-scale data analysis.

mice is usable for data sets with large numbers of observations and moderate
numbers of variables. It ran in 0.25-1s per observation on datasets with 18
observations and 100 to 10,000 observations, but in 10-20s per observation on
datasets with 59 variables. The ability to use large numbers of variables is
important not only because the models of interest may include many variables,
but because imputation will tend to be improved when additional variables are
used.

missRanger and MIDAS were feasible even for quite large data sets, taking about

9



10CHAPTER 3. AVAILABLE IMPLEMENTATIONS OF MULTIPLE IMPUTATION

0.1s per observation with 59 variables and 10,000 observations. Both could be
used with even larger numbers of variables or observations. missForest was
slower, but still usable.

3.2 Imputation accuracy in healthcare settings

We analysed three predictive models using the range of imputation models (Lee,
2018). The first was a model for in-hospital mortality fitted to data from the
US MIMIC-III intensive-care database. The second was a model for in-hospital
mortality fitted the NZ National Minimum Dataset, and the third was a model
for non-cardiac mortality after surgery in New Zealand.

Since mice is widely-used and accepted, we assumed it would give well-
calibrated imputations on these datasets, and examined whether imputing
using the machine-learning approaches gave similar results. The results were
comparable for the two neural network approaches.

In contrast, missRanger gave imputed values that were much more variable than
those from mice, suggesting that it had failed to incorporate all the information
in the data. Excess variability in the predictions suggests that missRanger will
be less successful in correcting bias, and will overestimate the uncertainty in the
fitted model.

3.3 Conclusion

We have reservations about recommending missRanger because of its poorer
accuracy in these three examples. We have different reservations about the
neural-network methods provided by MIDAS: the software was not in a sufficiently
finished state to be relied on.

It is likely that both random-forest and neural-network imputation engines will
improve rapidly. MIDAS has already progressed from the version we evaluated,
and has substantially better documentation of the code.

If there is a need to perform imputation in data sets too large for mice to be
feasible, missRanger would be worth using at least as a sensitivity analysis for
comparison to a complete-case analysis.
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Worked example

In this section we show how missing data can be described and imputed. The

basic steps are

1.
2.

3.
4.

We will use R packages mice and missRanger to perform imputations, mitools
(Lumley, 2019) to combine results, and naniar (Tierney et al., 2019) to explore

Explore the structure of the missing data

Run imputation software to produce a collection of possible complete

datasets
Run the analysis on each data set
Combine the results

missing data structure.

4.1 Example: Youth Risk Behavior Survey

From the Centers for Disease Control and Prevention (https://www.cdc.gov/

healthyyouth/data/yrbs/index.htm)

The Youth Risk Behavior Surveillance System (YRBSS) monitors six
categories of health-related behaviors that contribute to the leading
causes of death and disability among youth and adults, including—

Behaviors that contribute to unintentional injuries and violence
Sexual behaviors related to unintended pregnancy and sexually
transmitted diseases, including HIV infection

Alcohol and other drug use

Tobacco use

Unhealthy dietary behaviors

Inadequate physical activity

11
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YRBSS also measures the prevalence of obesity and asthma and
other health-related behaviors plus sexual identity and sex of sexual
contacts.

YRBSS includes a national school-based survey conducted by CDC
and state, territorial, tribal, and local surveys conducted by state,
territorial, and local education and health agencies and tribal gov-
ernments.

We will fit a predictive model for asthma using age, exercise, height, weight, and
smoking. The asthma variable is coded 1=Yes, 2=No, 3=Don't know

library(dplyr)
library(purrr)
load("Data/yrbsi5.rda")
dim(yrbs15)

## [1] 15624 240

yrbs15 <- select(yrbslb5, ql, sex=q2, grade=q3, height=q6, weight=q7,
bullying=q23, ebullying=q25, wtperceived=q69, wtgoal=q70, exercise=q8
asthma=q87,sleep=988, english=q99, smoke=qgntob2, tobacco=qgntob4, qnfr
gnfr3, qgnvegl, qnveg3, gnsodal, gnsoda3,overwt=qnowt, raceeth) %>/
map_df (as.numeric) %>%
mutate(age=ql+11, has_asthma=ifelse(asthma==3, NA, asthma==1)) %>%
mutate (raceeth=factor(raceeth)) %>%
select(-ql, -asthma)
dim(yrbs15)

## [1] 15624 23

First, consider just the complete cases

cc_model<-glm(has_asthma~sex*age+I(weight/height~2)+exercise+smoke,
data=yrbsilb, fami1y=binomia1,na.action=na.exc1ude)
summary (cc_model)

##

## Call:

## glm(formula = has_asthma ~ sex * age + I(weight/height™2) + exercise +
#i# smoke, family = binomial, data = yrbsl5, na.action = na.exclude)
##

## Deviance Residuals:

## Min 1Q Median 3Q Max

## -1.1500 -0.7544 -0.7130 -0.6387 1.8851

##

## Coefficients:

## Estimate Std. Error z value Pr(>|z|)

## (Intercept) -2.187909 0.903773 -2.421 0.0155 *
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#i#
#i#
#it
#i#
#i#
#i#
#i#
#it
#i#
#i#
#i#
#i#
#i#
#i#
#i#t
#i#t
#i#

ccC
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' 1 1

sex 1.055178 0.565948 1.864 0.0623 .
age 0.064770 0.055457 1.168  0.2428
I(weight/height™2) 0.027639 0.004075 6.782 1.19e-11 *x*x
exercise 0.004964 0.008934 0.556 0.5785
smoke -0.306338 0.057552 -5.323 1.02e-07 *x*x
sex:age -0.070038 0.035162 -1.992 0.0464 *
Signif. codes: 0 '*x*' 0.001 'x*' 0.01 'x' 0.05 '.' 0.1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 13150 on 11829 degrees of freedom
Residual deviance: 13068 on 11823 degrees of freedom
(3794 observations deleted due to missingness)
AIC: 13082

Number of Fisher Scoring iterations: 4

_pred<-predict(cc_model,type="response")

The output says there are 3891 observations deleted because of missing data.

First, look at missing data patterns

library(visdat)
library(naniar)

vi

5000

10000

15000

s_dat (yrbs15)

Type

factor
logical
numeri

NA
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We can see there is both sporadic missingness and some large blocks of missing
values that indicate poor compliance at particular survey sites.

An UpSet plot shows the combinations more clearly. There are many people
missing the has_asthma variable; there are some who have the asthma measure-
ment but are missing data on height and weight, sleep, smoking or exercise.

gg_miss_upset (yrbsi5[,c("has_asthma","sex","age","height","weight","exercise","smoke").
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The other variables in our reduced data set measure bullying, diet, perception
of the teens own weight, diet, and facility with English. The dietary variables
are less often missing than height and weight, and in different people, so they
could be valuable. Sleep and bullying are also rarely missing

gg_miss_upset (yrbs15,nsets=23)
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4.2 Imputation with mice

First, we will use mice.

The function mice() creates imputations. We will use M = 20 complete data
sets. The literature varies on how large M should be, largely driven by improve-
ments in computing over the three decades that multiple imputation has been
in use. Where computationally feasible, I would recommend at least 20, and up
to 100; if necessary, it may be possible to get away with as few as M = 5.

library(mice)
system. time(

m_imputations <- mice(yrbsl5, m=20, maxit=5, printFlag=FALSE)
)

## user system elapsed
## 937.672 106.035 1044.745

We can now perform analyses with the 20 imputed data sets using the with()
function and pool them using the pool () function

mice_models <- with(m_imputations,
glm(has_asthma~sex*age+I(weight/height~2)+exercise+smoke,
family=binomial,na.action=na.exclude)
)

pool(mice_models)$pooled[,c("estimate","fmi")]

## estimate fmi
## (Intercept) -1.465927041 0.1276096
## sex 0.730912151 0.1177881
## age 0.016863127 0.1083691
## I(weight/height”™2) 0.029194860 0.2890587
## exercise 0.003309807 0.2548758
## smoke -0.316716521 0.1585347
## sex:age -0.048629590 0.1143963

summary (pool (mice_models))

## estimate std.error statistic df
## (Intercept) -1.465927041 0.832994421 -1.7598282 1099.8893
## sex 0.730912151 0.517531995 1.4123033 1272.8830
## age 0.016863127 0.050715247 0.3325061 1478.9480
## I(weight/height”™2) 0.029194860 0.004151449 7.0324505 232.3686
## exercise 0.003309807 0.008849589 0.3740069 296.6139
## smoke -0.316716521 0.053062390 -5.9687572 734.8548
## sex:age -0.048629590 0.032166147 -1.5118251 1341.9575
#i# p.value

## (Intercept) 7.871490e-02

## sex 1.581051e-01
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## age 7.395543e-01
## I(weight/height™2) 2.247269e-11
## exercise 7.086664e-01
## smoke 3.718402e-09
## sex:age 1.308138e-01

The imputation has been very successful: the fraction of missing information
(fmi) about the parameters is small. We can now use the pooled regression
coeflicients to make predictions, and the pooled standard errors to evaluate the
uncertainties in those predictions. The coefficient of body mass index has stayed
about the same, but those for sex, age, and smoke have changed noticeably, and
the predictions will be impacted.

Alternatively, we could extract predicted values from each model and pool these.
Unless we have a strong belief in the accuracy of the predictive model, it should
be better (though less convenient) to postpone the pooling as long as possible

mice_datasets<-complete(m_imputations, action="all")

mice_predictions<-lapply(mice_datasets,
function(dataset)q{
predict(glm(has_asthma~sex*age+I(weight/height~2)+exercise+smoke,
family=binomial,data=dataset), type='"response'")

b

length(mice_predictions)

## [1] 20
length(mice_predictions[[1]1])

## [1] 16624

Here we look at the relationship between the first two versions of the predicted
value. Observations with complete data are in red, and those with missing data
are in green

plot(mice_predictions[[1]],mice_predictions[[2]],
col=ifelse(is.na(cc_pred),"forestgreen","darkred"),
pch=19, xlab="Risk of asthma (imp 1)",ylab="Risk of asthma (imp 2)")
abline(0,1)
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The green points are spread out around the diagonal line, reflecting that the
two imputations have different values for the missing data. The red points are
clustered fairly closely around the diagonal line; differences between the two
predictions for these points reflect differences in the fitted model.

Our best estimate of the predictions is the average across all the impute values.
We compare this to the predictions for the complete-case analysis

library(ggplot2)

mice_final_pred<-Reduce( + ,mice_predictions)/length(mice_predictions)

summary (mice_final_ pred)

## Min. 1st Qu. Median
## 0.1651 0.2183 0.2345

summary (cc_pred)

## Min. 1st Qu. Median
## 0.168 0.220 0.235

Mean 3rd Qu. Max.
0.2437 0.2620 0.4955

Mean 3rd Qu. Max. NA's
0.244 0.261 0.484 3794

ggplot(data.frame(cc=cc_pred,mice=mice_final_pred), aes(x=cc,y=mice))+

geom_miss_point()+
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xlab("Complete-case predictions")+ylab("mice predictions")+
geom_abline(intercept=0,slope=1)
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Complete—case predictions

There are two benefits from imputation visible here. First, and most dramati-
cally, the red observations do not have a prediction in complete-case data; the
predictive model fails. Second, the predictions from the imputed data are higher
at the high end and lower at the low end; there is a small amount of systematic
bias

4.3 Imputation with missRanger

We need to make one data change to use missRanger: it does not allow logical
(TRUE/FALSE) variables, so has_asthma must be recoded as 0/1. There is
also a change in how the imputations are created: missRanger only does one
imputation each time it is invoked, so we use replicate() to invoke it M
times. The pmm.k option controls the use of predictive mean matching (see
@ref{pmm}), which ensures that imputed values only take on values that are
already seen in the data

library(missRanger)
yrbs15$has_asthma<-as.integer(yrbs15%has_asthma)
system.time(
r_imputations <- replicate(20, {
missRanger (yrbs15, maxiter=5, pmm.k=5)
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},simplify = FALSE)

Missing value imputation by random forests
Variables to impute: sex, grade, height,

Variables used to impute: sex, grade, height,
iter 1: ... e

Missing value imputation by random forests
Variables to impute: sex, grade, height,

Variables used to impute: sex, grade, height,
iter 1: ... e

Missing value imputation by random forests

Variables to impute: sex, grade, height,
Variables used to impute: sex, grade, height,
iter 1: ...
iter 2: L.
iter 3: L e

Missing value imputation by random forests

Variables to impute: sex, grade, height,
Variables used to impute: sex, grade, height,
iter 1: ... .

Missing value imputation by random forests

Variables to impute: sex, grade, height,
Variables used to impute: sex, grade, height,
iter 1: ... e
iter 2: L
iter 3: L. e
iter 4: ... e
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Missing value imputation by random forests
Variables to impute: sex, grade, height,
Variables used to impute: sex, grade, height,

iter 1: ... e

iter 2: L

iter 3: L e

Missing value imputation by random forests

Variables to impute:

Variables used to impute:
iter 1:
iter 2:
iter 3:
iter 4:

sex, grade, height,
sex, grade, height,

Missing value imputation by random forests

Variables to impute:
Variables used to impute:
iter 1:

sex, grade, height,
sex, grade, height,

Missing value imputation by random forests

Variables to impute:
Variables used to impute:
iter 1:

sex, grade, height,
sex, grade, height,

Missing value imputation by random forests

Variables to impute:
Variables used to impute:
iter 1:

sex, grade, height,
sex, grade, height,

Missing value imputation by random forests

Variables to impute:
Variables used to impute:
iter 1:

sex, grade, height,
sex, grade, height,
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weight,
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weight,
weight,
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iter 2: ...,
iter 3: ...
Missing value imputation by random forests
Variables to impute: sex, grade, height, weight, bullying, ebullying, wtper
Variables used to impute: sex, grade, height, weight, bullying, ebullying, wtper
iter 1: ... i,
iter 2: ..o,
iter 3: ..
Missing value imputation by random forests
Variables to impute: sex, grade, height, weight, bullying, ebullying, wtper
Variables used to impute: sex, grade, height, weight, bullying, ebullying, wtper
iter 1: ...l
iter 2: ...,
iter 3: ...
iter 4: ...,
Missing value imputation by random forests
Variables to impute: sex, grade, height, weight, bullying, ebullying, wtper
Variables used to impute: sex, grade, height, weight, bullying, ebullying, wtper
iter 1: ... oiiiiiiiiiin,
iter 2: ..o,
iter 3: ..
iter 4: ...
Missing value imputation by random forests
Variables to impute: sex, grade, height, weight, bullying, ebullying, wtper
Variables used to impute: sex, grade, height, weight, bullying, ebullying, wtper
iter 1: ... oo,
iter 2: ...iiiooiiiiiiii,
iter 3: ..
iter 4: ...
iter 5: ...,
Missing value imputation by random forests
Variables to impute: sex, grade, height, weight, bullying, ebullying, wtper
Variables used to impute: sex, grade, height, weight, bullying, ebullying, wtper
iter 1: ...l
iter 2: ...
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#i#
##
##
##
#it
#i#t
#it
##
##
##t
#it
#it
##
##
#it
#it
#it
##
##
##
#Hit
#i#t
#i#t
##
##
##t
#i#t
#it
##
##
##t
#Hit
#i#t
##

#i#t
#it

Missing value imputation by random forests

Variables to impute:
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sex, grade, height, weight, bullying, ebullying, wtperceived, wtg

Variables used to impute: sex, grade, height, weight, bullying, ebullying, wtperceived, wtg

iter 1: ...
iter 2: L
iter 3:
iter 4: ... e
iter 5

Missing value imputation by random forests
Variables to impute: sex, grade, height, weight,

Variables used to impute: sex, grade, height, weight,
iter 1: ...

Missing value imputation by random forests

Variables to impute: sex, grade, height, weight,
Variables used to impute: sex, grade, height, weight,
iter 1: ...
iter 2: L. e
iter 3: L.

Missing value imputation by random forests

Variables to impute: sex, grade, height, weight,

Variables used to impute: sex, grade, height, weight,
iter 1: ...
iter 2: L e
iter 3: L e
user system elapsed

13240.713 300.419 3976.111

bullying,
bullying,

bullying,
bullying,

bullying,
bullying,

The output from this code is like the output from complete() in mice, a list
of data sets. We can combine them using imputation-combining functions from
the mitools package

library(mitools)
ranger_imps<-imputationList(r_imputations)
ranger_models<- with(ranger_imps,
glm(has_asthma~sex*age+I(weight/height~2)+exercise+smoke,

family=binomial,na.action=na.exclude)

ebullying,
ebullying,

ebullying,
ebullying,

ebullying,
ebullying,

wtperceived,
wtperceived,

wtperceived,
wtperceived,

wtperceived,
wtperceived,

wtg
wtg

wtg
wtg

wtg
wig
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)

summary (MIcombine (ranger_models))

## Multiple imputation results:

#i#t with(ranger_imps, glm(has_asthma ~ sex * age + I(weight/height~2) +
## exercise + smoke, family = binomial, na.action = na.exclude))

##t MIcombine.default(ranger_models)

#it results se (lower upper)

## (Intercept) -1.853724781 0.835663183 -3.49329541 -0.214154152

0
## sex 0.891706608 0.535771825 -0.16041311 1.943826325
## age 0.037947080 0.051786897 -0.06368223 0.139576392
## I(weight/height™2) 0.027932408 0.003841455 0.02039265 0.035472162
## exercise 0.002305394 0.008236694 -0.01385667 0.018467457
0
0

## smoke -0.278113393 0.055418525 -0.38706296 -0.169163827
## sex:age -0.058270843 0.033210005 -0.12347648 0.006934792
## missInfo
## (Intercept) 13 %
## sex 18 %
## age 14 %,
## I(weight/height™2) 15 %
## exercise 14 7%
## smoke 22 %
## sex:age 17 %

Next, we find the predicted values for each set of imputations and average the
multiple predictions for each variable. Again, the red indicates predicted values
where there is no missing data, so that the differences are due to differences in
the trained model; the green indicates differences where there is missing data
and shows the uncertainty in individual imputations.

The scatter of green points is less structured than with mice, because the predic-
tions are averaged over many trees. The lack of structure shows that many vari-
ables have contributed small amounts to predicting the missing values. Whether
this is good or bad depends on the setting. If there is actually strong predictive
information in just a few variables it’s bad; if the informative really is diffusely
spread across many variables it’s good. In this case I think it’s bad.

ranger_predictions<-with(ranger_imps,{
predict (glm(has_asthma~sex*age+I(weight/height~2)+exercise+smoke,
family=binomial), type="response")

b

plot(ranger_predictions[[1]],ranger_predictions[[2]],
col=ifelse(is.na(cc_pred),"forestgreen","darkred"),
pch=19, xlab="Risk of asthma (imp 1)",ylab="Risk of asthma (imp 2)")
abline(0,1)
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Risk of asthma (imp 2)
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Risk of asthma (imp 1)

The plot comparing complete-case to missRanger predictions shows a different
pattern from that for mice. We now are seeing lower predictions at the high
end, not higher.

library(ggplot2)
ranger_final_pred<-Reduce( +  ,ranger_predictions)/length(ranger_predictions)

summary (ranger_final_pred)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.1674 0.2192 0.2342 0.2427 0.2596 0.4771

summary (cc_pred)

#i# Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
#i#t 0.168 0.220 0.235 0.244 0.261 0.484 3794

ggplot(data.frame(cc=cc_pred,ranger=ranger_final_pred), aes(x=cc,y=ranger))+
geom_miss_point () +
xlab("Complete-case predictions")+ylab("missRanger predictions")+
geom_abline(intercept=0,slope=1)
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0.4~

missing
©® Missing

0.3- ® Not Missin

missRanger predictions

0.2-

'
0.2 0.3 0.4 0.5
Complete-case predictions

Comparing the predictions from missRanger and mice confirms that
missRanger is predicting lower values at the high end, and shows consid-
erable scatter. Because mice has been more thoroughly tested, and because we
expect the information to come mostly from a small number of variables, we
would trust mice more here. It’s still useful to know how they compare.

ggplot(data.frame(mice=mice_final_pred,ranger=ranger_final_pred,cc=!is.na(cc_pred)), a
geom_point () +
xlab("mice predictions")+ylab("missRanger predictions")+
geom_abline(intercept=0,slope=1)
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Chapter 5

Some technical details

In this section M is the number of imputed datasets, which are indexed by
m=1,..., M.

5.1 Formulas for combining multiply-imputed
datasets

Suppose we are interested in estimating a parameter 5. Given M coeflicient esti-

mates 7, ... 3}, based on a collection of imputed datasets, the overall estimate
is

| M
B=172_ B
m=1
If in addition we have M variance estimates 6%,...,63, of the variance of

B1, ..., By the estimated variance is

1 & Rt 2
—2 A2 Ax 2
= A 2 T o G

m=1 m=1
The first term in this equation estimates the variance we would have with com-
plete data; the second term is the additional variance due to having missing
data. If the missing data could be imputed perfectly, the second term would
be zero; if the missing data cannot be predicted at all, the second term will be
large.

The fraction of missing information estimates how much of the information
about [ has been lost due to missing data. This can be much smaller than the
proportion of cases with missing information, because imputation makes use of
the partial information present in incomplete observations. Heuristically, the

29
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fraction of missing information just the second term in the variance formula
divided by the whole variance; in practice we use a more complicated formula
that behaves better when M is small.

5.2 Chained equations

An obvious difficulty in creating a model to predict missing values is that there
will be missing values in more than one variable — where do you start? The
chained-equations strategy is to start with random noise and to iterate: predict
the first variable from the rest, the second variable from the new values of the
first and the old values of the rest, the third from the new values of the first two
and the old values of the rest, and so on through all the variable and for many
iterations.

This iterative process is a Markov chain, a class of random processes that is very
thoroughly studied in statistics and probability. Under fairly weak assumptions
(basically, that it doesn’t get stuck in a loop) a Markov chain will forget its start-
ing values and sample randomly from a unique stationary distribution defined
by the models predicting each variable from all the others.

Both mice and the random-forest techniques use chained equations to construct
imputations. The random-forest packages construct M separate Markov chains;
mice runs one Markov chain long enough to extract M datasets from it.

5.3 Predictive Mean Matching

One of the complications with imputed data is that the imputation model may
not know about all the constraints on the true variable. Age may be recorded
to the nearest year but be imputed as a continuous variable. Salary will be
non-negative in the observed data but might be imputed as negative. There are
two reasons this can be problematic. First, it is bad for face validity. Second,
while it’s typically not a problem for traditional statistical analyses, it presents
concern for deep neural networks, which are known for using unintended data
features to distort predictions.

Predictive mean matching is a way to ensure that imputations do not introduce
imputed values that are not present anywhere in the original data for the vari-
able. First, predicted mean values are generated for every observation, missing
or not. For each missing observation, we find the observed value with the closest
predicted mean (or choose randomly from the few with the closest means). We
use this observed value as the imputed value.
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5.4 Random forests

Classification and regression tree predictors work by splitting the data into two
groups, then splitting each of those into two groups, and so on recursively. Single
trees are usually not very good predictive models, but collections of trees can
be.

A random forest predictive model fits a large collection of trees, with each tree
using a randomly chosen subset of variables. Each tree gives a prediction, and
the prediction from the forest is the average (for a continuous variable) or a
majority vote (for a categorical variable).

Random forests give good-quality ‘black box’ predictions. They can straightfor-
wardly be implemented to run on large data sets and take advantage of parallel
computing, since each tree is constructed independently and each split results
in a smaller data set.

5.5 Autoencoders

All the imputation approaches express the data as a model plus noise, estimating
the model part and sampling the noise at random. The previous approaches
create the model one variable at a time. Autoencoders, by contrast, create a
multivariate model for combinations of the variables, and sample the noise for
combinations of the variables.

The idea of an autoencoder is to have a deep neural network with a narrow bot-
tleneck in the middle layer and with (mostly) symmetric layers before and after.
The low-dimensional bottleneck layer represents the ‘model’ part of the data;
the layers before the bottleneck learn the encoding down to the low-dimensional
representation; the layers after the bottleneck expand to the full distribution.
If the neural network used linear transformations rather than the nonlinear
transformations it actually uses, an autoencoder would perform principal com-
ponents analysis, with the first few principal components used as the model and
the remainder treated as noise.
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